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The Ordering Operator Calculus (1982) provided a discrete, strictly finite foundation

for differential geometry and the calculus. This abstract mathematical formulation was

subsequently incorporated in Foundations of a Discrete Physics (1988), which applied
it to a reformulation of relativistic quantum mechanics, vis-à-vis the combinatorial

hierarchy and Prof. Noyes’ Bit String Physics. The present paper provides a review of

ordering operators, discusses principles for applying the ordering operator calculus to
physics, and provides a high-level introduction to an OOC notational calculus – the

tensor calculus – so that tensor equations can be interpreted as a special case of ordering

operator equations.

Preface

I first met Prof. Noyes (“Pierre”) in the spring of 1978 at a weekly seminar I

co-sponsored with Dr. Hewitt D. Crane at Stanford Research Institute (now SRI

International) and initiated by my friend and co-author Eddie Oshins. Although I

was familiar with the work of Dr. E. W. “Ted” Bastin, it was there Pierre brought

us up-to-date on the Combinatorial Hierarchy and I first introduced him to the

beginnings of the ordering operator calculus. Subsequently, ANPA was founded at

Pierre’s instigation, and he invited me to attend the second annual meeting at King’s

College, Cambridge University, where I had the honor of meeting Ted Bastin, Prof.

Clive Kilmister, Dr. John Amson, Dr. Fredrick Parker-Rhodes, and others. I began

working with Pierre at SLAC under his sponsorship in the early 1980s. Over the

years, Pierre has been friend, mentor, teacher, and inspiration. In all likelihood, had

it not been for Pierre, I would have abandoned my work in physics altogether and

might well have abandoned the ordering operator calculus.

Thank you Pierre, and Happy 90th Birthday!
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I. Introduction

The ordering operator calculus (OOC) is a purely discrete and finite mathemat-

ics, and provides a covering theory for certain theories of continuum mathematics.

Proper subsets of OOC are isomorphic to those theories up to their requirements

for infinities, infinitesimals, and unbounded procedures, the OOC having constructs

that remove those requirements. Previous publications on the subject established

a general foundation for the ordering operator calculus. Ordering operators were

defined and the formalisn shown to be powerful enough to provide support for the

apparatus of topology and differential geometry (The Ordering Operator Calculus,

1982–1985). This was done by recasting and redefining the foundations of finite

differences, incorporating insights from recursion theory and combinatorics. Subse-

quent publications such as Foundations for a Discrete Physics (“FDP”), (SLAC-Pub

4526, June 1989) added conceptual discussion of ordering operators and explored

applications, especially to physics and, in particular, special relativity, relativistic

quantum mechanics and quantum field theory.

With the exception of the original OOC paper which introduced the abstract

(i.e., unapplied) mathematical concepts, previous papers have addressed results

derivable when particular classes of ordering operators are used. In most of those

publications pertaining to physics, the discussion was restricted to a special class of

ordering operators that would reproduce Prof. Noyes’ Bit String Physics in which

bit strings partitionable into label and address portions are generated. In FDP, the

conception of the input or output of ordering operators as being labels with unspec-

ified structural complexity was a convenience not intrinsic to ordering operators in

the general case. Many results obtained in FDP were already obtained in the more

general case.

In prior publications, a unified apparatus for symbolic computation has not

been given. That omission is corrected with this paper. As a by-product, OOC

obtains application to general relativity and that application is born quantized.

Mathematical details will be addressed in future papers as time permits.

II. Conceptual Beginnings

Many systems encountered in both theory and practice are a priori discrete,

finite, and intrinsically process oriented. By discrete, I mean that there is no intrinsic

reason to import or assume the properties of the continuum1. By finite, I mean

that there is no reason for assuming any infinities (completed infinities) or infinite

extensibility (e.g., infinite recursion). With Leibnitz, we consider these to be fictions

leading to computational shortcuts. Furthermore, certain properties may depend on

the cardinality of the system and its subsystems. By intrinsically process oriented I

mean that there is a inherent notion of the system evolving recursively in that certain

1One might argue, however, that the OOC approach is consistent with an Archimedean continuum
based on ratios (as contrasted with the Wierstrass version based on limits).
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properties depend on the generation or on comparison of generations. Examples

are physical systems that display characteristic numbers of the Fibonacci series,

Combinatorial Hierarchy, and the like.

In representing such systems, it is important to be very reluctant to introduce

any continuum properties in the mathematical description, and to do so only de-

liberately and with full cognizance of their effects. Preferably, these effects can be

contained or bounded so that they do not pervade the representation and erode

(e.g., contradict) the finite, discrete, and process properties. The received founda-

tions of mathematics and logic introduce continuum properties in many ways, both

within the object language and the metalanguage2.

III. Physical Motivations

A. Problems with the Computational Apparatus

There exists a seemingly irresolvable tension between mathematics and science

that is never more apparent than it is in the foundations of physics, where it becomes

a violent collision. Many physicists choose to ignore these problems, treating them

as inconsequential artifacts. A science should be questioned when its mathematics

must be circumvented by procedures that have no physical motivation except to

avoid absurdities. Problems such as:

1. the inherent incompatibility of quantization and geometrodynamics

while both quantum theory and geometrodynamics give correct empirical

results,

and

2. the appearance of infinities that require ad-hoc renormalization, especially

when that renormalization leads to astoundingly accurate predictions as in

quantum field theory,

should not be dismissed. These incompatibilities do not exist in the “real world” –

whatever that might be, it is necessarily a self-consistent entity.

Although renormalization procedures are motivated by vague physical require-

ments (e.g., bounding momentum or dimensionality), the choice of renormalization

procedure is really little more than trial and error (i.e., picking one that yields cor-

rect results) with heuristic motivation. How baldly embarrassing all this would be

if it were it not for the astounding accuracy that obtains. Of course, all this occurs

simply because some of our mathematical entities (e.g., operators and variables)

are ill-defined. When the complexity of a physical process like particle interaction is

2Indeed, Abraham Robinson’s non-standard analysis takes this infection to the extreme and makes

it inherent in the mathematics. I disagree with Robinson’s historical perspectives, including the
notion that infinitesimals are intuitive – that perspective came into being only in modern times
after decades of indoctrination and, I dare say, is not held by the mathematically unsophisticated.
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recursively extensible without bound (because you don’t know when the recursion

should halt based on any physical understanding), then no finite quantities char-

acterizing the process have any meaning. As is well-known, this fact raises its ugly

head precisely because we can’t normalize probabilities in the first place. To put it

bluntly, we can wave the magic wand of renormalization in QED or QCD to get

something that works, but we really don’t know what we are talking about.

I’m not being critical of my physicist and mathematician friends. These are very

serious, very difficult problems. Most practicing physicists just want to get on with

the business at hand and assume that all this will eventually sort itself out – or that

it is anomalous in some way.

I submit that these problems arise in the first place because we have the wrong

mathematical model on several counts: the continuum. To be clear, my position is

that continuum mathematics as currently practiced by physicists is an inadequate

tool for modeling the foundations of physics. This position has been held by numer-

ous physicists and mathematicians including Weyl, Gödel, and Wheeler. According

to Wheeler, Weyl believed the continuum of the natural numbers an idealization

and that the lesson of Gödels incompleteness theorems was that we commit a folly

when we construct or believe in completed infinities (i.e., infinity as number).

B. Conflicts Between Ontology and Epistemology

Bohr seems to have taken an epistemological view of physics, choosing to under-

stand the task of physics as being to describe the information we can have about

reality, and going so far as to deny any reality. By contrast, Einstein’s ontological

view of physics poses the task of phyisics as being to describe reality. Neither can

be completely correct nor are they strictly contradictory.

On the one hand, we are surely trapped in informational theories and can never

directly perceive some assumed objective reality. All we can demand is epistemolog-

ical consistency. In this sense, Bohr was right. However, he went too far in claiming

that the limits of a particular epistemological theory (e.g., Copenhagen quantum

mechanics) were necessarily inviolate or that that epistemological theory could be

uniquely correct. In particular, an assertion that reality is inherently probabilistic

is simply unprovable – about as helpful as asserting that an omnipotent god is

responsible for everything.

On the other hand, Einstein’s desire to answer the ontological question is clearly

more in line with our intuitive understanding of the task of physics. However, si-

multaneously postulating a continuum, infinite reality and a complete, deterministic

descriptive theory is contradictory, while denying epistemological limitations, is con-

tradictory. In this sense, Einstein was wrong. At best all physics can do is identify

that class of theories powerful enough to describe our (presumed objective) experi-

ence of reality and eliminate those theories that contradict that experience. That is,

the task of physics (and, in general, of any experimental science) is to tell us what

reality is not.
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I see the primary task of physics as being, first and foremost, to provide a

unified approach to our understanding of information3. Then and only then can we

consider information as an explanation of the causal structures we call reality. What

is needed is an abstract mathematical apparatus for constructing abstractions that

(a) is rich enough to model physical properties and their measurement and (b) can

do so without a priori or imported abstractions or limitations.

IV. Ordering Operators

A. Graph Representation

For pedagogical purposes, an ordering operator is a recursive generator of a par-

ticular directed acyclic graph (DAG) defined on an ensemble of nodes of cardinality

N . The graph is not embedded in any space. We call this particular DAG the or-

dering operator’s canonical DAG (CDAG). There are two elements to this notion:

(1) the canonical directed graph and (2) its generation. It is convenient to think

of a specific ordering operator as a dedicated purpose computer which contains its

canonical CDAG in internal memory and instructions for recursively providing a

walk of that CDAG.

As is well known, a directed graph G containing n nodes (a.k.a. vertices) can

be represented by an n×n adjacency matrix A which shows which node of the

graphs are connected to which other nodes. Generally, the aij entry is the number

of connections (a.k.a. arcs or edges) from the ith node to the jth node. Every arc has

an initial node ni and a final node nj . A binary adjacency matrix A or connection

matrix restricts the number of arcs from the ith node to the jth node to Boolean

values of either 0 or 1. Thus, a connection matrix satisfies the first part of an ordering

operator by representing the reachability relation for the graph. If the entries for

the ith column of A are all zero, then we say the ith node is an initial node of G.

If the entries for the jth row of A are all zero, then we say that the jth node is a

terminal node of G.

Define an adjacency sub-matrix Ak for the binary adjacency matrix A as an

n×n matrix in which some of the arcs represented in A are disallowed; that is, the

corresponding entry is 0 in Ak where in A it was a 1 (or more).

The generation of a directed graph has a dual representation, either as a totally

ordered set of states of the graph or as a totally ordered set of transition matrices.

An ordering operator may be conveniently thought of as a particular walk of

a pre-existing DAG, although this does not capture the ontological content of the

OOC and can be misleading4. An adjacency matrix contains insufficient information

3I do not mean information theory.
4Care must be taken not to ignore the generative aspects of the computation, which are essential
to understanding the process aspects of an OOC application.
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to capture more than one walk of the CDAG. Walking a graph consists in visiting

each node of the graph in such a way that every arc is traversed at least once,

subject to the requirement that the initial node of the arc is either an initial node

of G or is a final node in the previous step. Every walk is either a walk on a directed

graph or may be understood as inducing a direction on each arc of an undirected

graph.

A state can be defined as a matrix showing which nodes have been most recently

visited, beginning with those nodes of the graph that have only outbound arcs (i.e.,

have only 0s in corresponding column of the adjacency matrix) and ending on

those nodes which of the graph that have only inbound arcs (have only 0s in the

corresponding row of the adjacency matrix). For a walk of graph G, define a state

vector at step Sm of the walk as the n-element vector for which the ith element is

zero unless the most recent step has followed at least one arc that terminates at the

corresponding node. By convention, we will express state vectors as column vectors.

The initial state of G is represented by the state vector Si in which the jth

element is 1 if the jth node is an initial node of G and is 0 otherwise. The final state

of G is represented by the state vector Sf in which the jth element is 1 if the jth

node is a terminal node of G and is 0 otherwise. In general, the nth state of the

ordering operator is represented by an n-vector in which every node that has been

visited has a value of 1 and every node that has not been visited has value 0.

A transition matrix is a projection of the adjacency matrix that delineates a

single step in generating the adjacency matrix. Combining the set of transition

matrices in order yields the adjacency matrix. In order to capture the evolution of

the DAG, the ordering operator must be represented by an ordered set of states

or an ordered set of transition matrices, analogous to a tensor. Indeed, when we

consider generalized ordering operators in which the DAG is literally modifed by

the interaction of multiple ordering operators, we see that this analogy is precise

and allows us to reinterpret the abstract symbolic tensor calculus in discrete, finite,

process terms.

In general, note that each directed acyclic graph may be associated with a large

number of ordering operators, just as there are many DAGs for n labeled nodes.

In particular, for n labeled nodes the number of DAGs is given by the recurrence

relation:

an = (k − 1) 2k(n−k) an−k .

The same numbers count the (0,1) matrices in which all eigenvalues are positive

real numbers5. The proof is bijective: a matrix A is an adjacency matrix of a DAG

if and only if the eigenvalues of the (0,1) matrix A+ I are positive, where I denotes

the identity matrix.

Representing an ordering operator as a sequence of transition matrices enables

us to apply a specific ordering operator to a class of DAGs in addition to the

5See McKay, B.D., et al (2004).
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CDAG. For example, multiple subnets may be isomorphic to the ordering operator’s

canonical DAG or a subnet of it. Alternatively, a DAG may be isomorphic to the

canonical DAG up to some transformation T . That is, if the adjacency matrix

that results when all subnets having a particular adjacency matrix are replaced

by a new subnet is isomorphic to the adjacency matrix of the canonical DAG,

then the DAG may be said to be isomorphic to the canonical DAG up to the

transformation T . A transformation of particular interest is one that replaces the

given subnet with a single node having the inbound and outbound arcs of the subnet.

Such a transformation will be called a reduction and the given subnet the reduction

subgraph6.

A specific walk of G can be understood as an ordered sequence of pairs of state

vectors and adjacency sub-matrices:

Sn+1
c =

∑
Sn
c ×An

r,c .

B. Properties and Objects

Following Leibnitz (identity of indiscernables), we treat properties as funda-

mental and objects are being a confluence of properties rather than having a priori

existence. OOC represents a discrete, finite, process system as an ordering operator

O with a specific CDAG and each occurrence of a specific property P in that sys-

tem as an occurrence of a subgraph in the CDAG. Thus, every ordering operator

generates a set of one or more properties and, for sufficiently complex CDAG, there

may be many occurrences of a property.

The occurrences of each property P in a CDAG may be partially ordered and in a

variety of ways, only one of which corresponds to the partial ordering of generation of

P by the ordering operator O. Every other partial ordering corresponds to a walk of

the graph, but may violate the acyclicity provided by O, effectively inducing cycles.

The co-occurrence of collection of properties having the same partial ordering

for some subset of the occurrences of each property in a graph define multiple

occurrences of an object defined by those properties. In set theoretic terms, we

would say that the collection of properties are the defining or required properties of

the set (a.k.a. the meaning criteria). A predicate corresponding to the requirement

of these properties is then the membership function of the set. An instance of an

object may be inferred (“exists” in an ontological sense) only by virtue of the co-

occurrence of the defining properties for that object.

By suitable graph reduction, the occurrences of an object may be seen to be

ordered in various ways. If they are totally ordered, we say the ordering is “time-

like” and if partially ordered, then “space-like”. When we say that an object is

6The problem of finding all similar subgraphs among two given graphs is computationally NP-

complete, but we will not have need of that computation here. The problem is approached differ-
ently: we generate a hierarchy of graphs, each of which is a reduction of the previous, wherein the
reduction subgraph is specified in advance.
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moving through spacetime, we mean that its invariant, defining properties can be

found in multiple subgraphs and that each instance is associated with properties

that satisfy some definition of spacetime (such as a metric) across some ordering of

those instances.

C. Metrics and Probability

Measures and metrics are inherent in the combinatorial constructions of OOC.

In the generation of a CDAG, the occurrences of a particular subgraph may be

counted. Since the graph is finite, the total number of occurrences is known in

advance. Each ordered occurrence provides a ratio which can be interpreted as a

relative frequency or, equivalently, as a distance measure on the graph. Thus, OOC

unifies probability and metrics, and provides a multi-connected topology with many

metrics, each specific to the property (subgraph) or properties being measured. This

unification has many useful applications in quantum theory (e.g., understanding

EPR), but requires finite constructions.

D. Composition via Tensor Product

For graphs of sufficient complexity, there are many possible decompositions.

The resulting decomposition graphs need not be acyclic. When the decomposition

graphs are independent, we call them projections. Consider a CDAG corresponding

to an ordering operator O defined as the tensor product of n independent graphs

P1 ⊗P2 ⊗ · · · ⊗Pn, each with corresponding ordering operator. The tensor product

then corresponds to a tensor operator in n-dimensional space and, simultaneously,

to an ordering operator.

V. Correspondences to Physics

A. General Considerations

The principle of property confluence (or “co-occurrence”) outlined above is simi-

lar to how we would recognize macroscopic objects. It is even how we recognize par-

ticles between two particle events in particle physics: if the track matches a feasible

trajectory and the events obey the appropriate conservation laws, we assume parti-

cle identification and continuity. As an ontological principle, objects have existence

only in terms of a confluence of defining properties. In physics, those properties may

be quantum numbers and other invariants as represented by conservation laws. This

is a kind of Wheeler-Feynman rule combined with the Eddington idea that particles

are conceptual carriers between events of properties (quantum numbers) that satisfy

invariants (conservation laws). A key insight is that causal structure – and therefore

our notions of time and space – are defined in this way via Lorentz invariance.
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The generation order of the directed acyclic graph generated by an ordering

operator is not to be identified with time. Neither is the distance (by whatever

metric) between two subgraphs A and B to be identified with spatial separation per

se.

Instead, we find instances of the confluence of defining properties as subgraphs

and establish an ordering on these subgraphs that satisfies spatio-temporal proper-

ties such as Lorentz invariant metric. The requirements for such metrics have been

shown to be intrinsic to OOC7. In a sufficiently complex graph there will be many

spatio-termporal “paths” between object instances.

B. Feynman’s Discrete Path Integrals

If the spatio-temporal paths are given a representation in action-time, the graph

ceases to be acyclic so that some paths are generated “backwards in time”. Fur-

thermore, it is clear that there will be a path that corresponds to a minimum of

the summed action along the path – that is, a classical trajectory. We can char-

acterize alternative paths as being separated by a “phase” that characterizes the

difference in action. This representation is coordinate free and contravariant – hence

the corresponding ordering operator representation is an ordered set of adjacency

matrices.

Feynman and Hibbs showed how to construct the one-dimensional discrete sum

over all paths for the two slit. They treated this construction as being in one spatial

dimension with steps occurring in time, and no one has been able to extend it

to three spatial dimensions so that the correct results are obtained. If instead of

taking the Feynmann and Hibbs construction as being one-dimensional and needing

to be extended, we can take the construction to be on a spatial dimension along

the classical trajectory (i.e., in the preferred coordinate frame of the “particle”).

A different strategy now becomes apparent – we want to decompose Feynman’s

construction into three independent generators, i.e., the projections of the paths into

three coordinate bases. To put it another way, the ordering operator generates the

phase space representation in “action-generation” space. The coordinate spacetime

represenation must be derived from this via graph decomposition and reduction.

By definition, such decomposition must be a possible physical representation.

Feynmans paths in phase space become real: it is the imposition of classical space-

time that is artifactual. In essence, Feynman solved the three dimensional discrete

sum over all paths problem without realizing it. Furthermore, when viewed through

the classical spacetime lens, the generative order on the graph appears to have an

intrinsic Zitterbewegung. As explained in FDP, this Zitterbewegung satisfies the

requirements for a metric with Lorentz invariance. The construction is discrete, has

the required quantum mechanical properties, and is born relativistic. Even more

important, it is born without infinities.

7See, for example, FDP.
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This notion can be illustrated by considering a hypothetical ordering operator

that generates a DAG in which nodes represent an interaction event among elemen-

tary particles. To be a pair of events associated with a classical particle trajectory,

the pair of events must conserve certain physical properties such as energy and

momentum and must satisfy certain relations such as the Lorentz transformation.

These conditions allow us to “reverse engineer” spacetime on the DAG. However,

it should be clear that neither space nor time are then directly generated by the

ordering operator. Instead, it is imposed in hindsight as a way of organizing the

information carried by the DAG. In some ways, it is closer to a discrete version of

Feynman’s sum over all paths and, in fact, any recursive generator of Feynman’s

discrete sum over all paths in 1+1 dimensions (see Feynman’s and Hibbs’ derivation

of the solution to the 1+1 Dirac equation) can be seen as a special case of an or-

dering operator. The ordering operator calculus allows us to derive the propagator

(see FDP), and to generalize the discrete sum over all paths into four dimensional

spacetime as outlined here.

Note that the ordering operator representation provides a deterministic history,

but a probabalistic future in which there are a finite (though possibly very large)

number of multiple possible trajectories. As each observable event is generated,

these multiple potential trajectories are reduced to a single trajectory which satis-

fies the relevant conservation laws (constraints) in such a way that is consistent with

the classical trajectory constructed so far. In physics, we infer that a particle “car-

ries” the conserved quantities between events. An inexact and incomplete way of

characterizing this representation in causal terms might be to consider observation

to “collapse” the state of this inferred particle.

A similar process occurs in the generation and recognition of linguistic events.

Within a given corpus, the recipient (hearer or reader) of linguistic signals can

from time to time predict with certainty the next signal, whether that signal is a

phoneme, a word, a phrase (noun, verb, adverbial, adjectival), or a sentence. In

between these fully determined events, there are multiple possibilities. Note that a

hierarchy of overlapping “state waves” are being co-generated.

C. Interpretation of Tensor Calculus

A tensor may have either covariant or contravariant components. These corre-

spond to the ordering operator representations as a sequence of state vectors vs. a

sequence of adjacency matrices. As with tensors, a composition may be mixed. As

representations of physical systems, the tensor calculus deals with basis transfor-

mations (including coordinate bases). These are special cases of ordering operators

(as prescribed in FDP), most often derivable as projections and reductions of an

ordering operator having a graph in an abstract action-generation space.

If we understand the notation of the tensor calculus in terms of state vectors and

adjacency matrices having an n-dimensional basis and a metric based on occurrences

of properties (subgraphs), it is obvious that the tensor calculus can represent the
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much more general ordering operators with similar rules of interpretation. Although

the underlying state vectors and adjacency matrices will be binary, property metrics

introduce non-binary measures and both state vectors and adjacency matrices in the

resulting representation become the more familiar tensors. Characteristic numbers

of the underlying combinatorial structures become connection coefficients. Inasmuch

as it has been previously shown (FDP) that the OOC is a covering theory for

differential geometry, where differential geometry is understood as approximating

the high cardinality, finite combinatorics of OOC, we can reasonably anticipate a

precise correspondence between ordering operators and tensors.

The tensor calculus may be understood as a sub-theory of OOC, with OOC

being capable of capturing relationships outside conventional basis representations.

While the tensor calculus encourages representations in a topology which is singly-

connected, OOC provides representations in a multi-connected topology. As such,

relationships outside the Lorentzian causal structure become not only possible, but

natural.

VI. Conclusion

According to James Gleick, John Archibald Wheeler left behind “an agenda

for quantum information science”. We repeat this agenda here, annotated with

comments relating the steps of the agenda to progress in OOC:

1. Go beyond Wootters and determine what, if anything, has to be added to

distinguishability and complementarity to obtain all of standard quantum theory.

Comment: OOC provides a combinatorial theory of distinguishability and ex-

plains complementarity as a natural property of such finite and discrete process

systems.

2. Translate the quantum versions of string theory and of Einstein’s geometro-

dynamics from the language of continuum to the language of bit.

Comment: Although we eschew much of string theory as an unnecessary and

obfuscating complication, previous work has addressed much of relativistic quantum

theory, combinatorially deriving the fine structure constant, propagator, uncertainty,

and the relativtistic Schrödinger for the hydrogen atom, and the present paper makes

connection with geometrodynamics.

3. Sharpen the concept of bit. Determine whether “an elementary quantum

phenomenon brought to a close by an irreversible act of amplication” has at bottom

(1) the 0-or-1 sharpness of definition of bit number in a string of binary digits, or

(2) the accordion property of a mathematical theorem, the length of which, that is,

the number of supplementary lemmas contained in which, the analyst can stretch

or shrink according to his convenience.

Comment: TBD. However, it is clear that physics is more a theory about infor-

mation and its representation of knowledge, and less about some ontological reality.
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While I find no reason to accept the constraints of the Copenhagen interpretation,

it does seem likely that information is more context dependent than not, and so a

bit more like (2) in this regard.

4. Survey one by one with an imaginative eye the powerful tools that mathemat-

ics – including mathematical logic – has won and now offers to deal with theorems

on a wholesale rather than a retail level, and for each such technique work out

the transcription into the world of bits. Give special attention to one and another

self-referential deductive system.

Comment: Many of those mathematical tools rely upon features that are incon-

sistent with finitism, discreteness, and process-orientation and so, from my perspec-

tive,are incompatible with “the world of bits”.

5. From the wheels-upon-wheels-upon-wheels evolution of computer program-

ming dig out, systematize and display every feature that illuminates the level-upon-

level-upon level structure of physics.

Comment: This is precisely the importance of the Combinatorial Hierarchy, and

of OOC decomposition and reduction. There are other combinatorial and hierarchi-

cal relationships of importance as well, too numerous to go into here.

6. Capitalize on the findings and outlooks of information theory, algorithmic en-

tropy, evolution of organizisms, and pattern recognition. Search out every link that

each has with physics at the quantum level. Consider, for instance, the string of

bits 1111111. . . and its representation as the sum of the two strings 1001110. . . and

0110001. . . Explore and exploit the connection between this information-theoretic

statement and the finding of theory and experiment on the correlation between the

polarizations of the two photons emitted in the annihilation of singlet positron-

ium and in like Einstein-Podolsky-Rosen experiements. Seek out, moreover, every

realization in the realm of physics of the information-theoretic triangle inequality

recently discovered by Zurek.

Comment: These relationships have been explored in previous papers and OOC

has been shown to accommodate if not explain (previously characterized as “simu-

late”) EPR results. Prof. Noyes’ Bit String Physics provides a bit string represen-

tation of the standard model of particle physics and a bit string can be understood

as a projection of an ordering operator with respect to quantum numbers. I believe

that the greater richness of graphs is necessary for a complete model, especially if

quantum general relativity is to be incorporated. Much remains to be done.

7. Finally. Deplore? No, celebrate the absence of a clean clear definition of the

term ‘bit’ as elementary unit in the establishment of meaning. We reject “that view

of science which used to say, ‘Define your terms before you proceed’. The truly

creative nature of any forward step in human knowledge,” we know, “is such that

theory, concept, law, and method of measurementforever inseparableare born into

the world in union.” If and when we learn how to combine bits in fantastically large

numbers to obtain what we call existence, we will know better what we mean both
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by bit and by existence.

Comment: Here we disagree with Wheeler in part and insist that our terms be

defined before we proceed. On the other hand, Wheeler may well have been concerned

that such a stricture was too rigid to accommodate learning and refinement. Our

solution (see FDP) is to engage in a methodology that permits definitions of terms

and their relationships to be refined iteratively, mimicking the idealized scientific

method. Interestingly, this process can be modeled using OOC and so is consistent

with it. Our goal is like Wheeler’s – in OOC, “theory, concept, law, and method of

measurementforever inseparableare born into the world in union.”

All the foregoing point to much work to be done, putting flesh on the skelaton

as it were and refining the interpretation of tensor calculus notation. However, the

results obtained to date and the ability of OOC to represent both intrinsically

discrete theories such as quantum mechanics and intrinsically continuum theories

such as geometrodynamics is encouraging.
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